ALGEBRAIC CURVES
SOLUTIONS SHEET 11

Exercise 1. Let F' be a projective plane curve.

(1)

(2)
(3)

Let P € PZ. Show that P is a multiple point of F' if, and only if, F((P) =
Fx(P) = Fy(P)=Fz(P)=0.

Suppose F' is irreducible. Show that F' has finitely many multiple points.
Suppose F' is nonsingular. Show that F is irreducible.

Now assume that F'is irreducible of degree n.

(4)

Show that F' has at most 3n(n — 1) multiple points. (Hint: combine Be-
zout’s theorem with previous questions.)

Solution 1.

(1)

Wlog, let P = [1 : 0 : 0]. P is a simple point <= F.(Y,Z) has a
simple point at (0,0). Denote Fy(Y, Z) its degree 1 part. Then Fy(Y, Z) #
0 < (F.)y(0,0) # 0 or (F.)z(0,0) # 0. Moreover, (F.)y = (Fy).,
(F.)z = (Fz).. Note that by the formula

dF = XFx +YFy +ZF;,

F(P) =0 and Fy(P) = Fz(P) = 0 together with P € {X # 0} implies
Fx(P)=0.

The proof is completely analogous to Exercise 4.4 on Sheet 8 (and you could
deduce the version here from the version there by working in a standard
affine cover). By point (1), the locus of multiple points is given by M =
V(F, Fx, Fy, Fz). If we assume by contradiction that this is infinite, then
it must have dimension at least 1 by Exercise 2 on Sheet 7. Then, by
Exercise 1.4 on Sheet 7, we obtain M = V/(F), and thus in particular
Fx,Fy,Fy € L,(F). As F is irreducible, we have [,(F) = (F), and as
the degree of F'x, Fy, Fz is strictly smaller than the degree of F', we hence
obtain that all the partial derivatives are equal to 0. In characteristic 0,
this would imply that F' is constant, contradiction. If the characteristic of

k is p > 0, then we obtain that F' = G(XP?,Y?, Z?) for some homogeneous
form G € k[X,Y, Z]. But then, if we define GV/? := > i G%ﬁXinZl, we
obtain F' = (G'/?)?, contradicting the fact that F is irreducible.

Suppose F' reducible, F' = F} Fy. Then by Bezout V(F;) and V(F3) inter-

sects at least in one point P. As we have

Fx = Fi(Fy)x + (F1)x F,
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and Fy(P) = F5(P) = 0, it follows that Fx(P) = 0. The same holds also
for the other partial derivatives, and hence we obtain that P is a multiple
point, contradiction. Hence F' must be irreducible.

(4) By the proof of point (2), we must have that at least one of the partial
derivatives of F' doesn’t vanish; without loss of generality we assume Fx #
0. Let P be a multiple point of F'. We distinguish two cases:

e P=[1:0:0. As P € F, we can write F = X" 'F{(Y,Z)+--- +
Fo(Y,Z). Then Fx = (n — DX"2F,(Y,Z) + -+ + Fy_1(Y, Z). In
particular, we have mp(Fx) > mp(F) (with equality if and only if
chark {n —1).

o Pec{Y #£0}U{Z # 0}, wlog P € {Y # 0}. Let F. be the deho-
mogenization with respect to Y, and write P = [xp : 1 : zp|. Then if
m = mp(F), we have

Foxp+ X,zp+ Z) = F,,(X, Z) + (higher order terms)
for some homogeneous m—form F},,. Then notice that
(Fx)(xp+X,2p+2Z) = (Fo)x(xp+ X, 2p+ Z) = (Fo)x(X, Z) + - -
so as (F,)x is an (m — 1)-form (or 0), we obtain that mp(Fx) >
m—1=mp(F)—1.

In conclusion, we have mp(Fx) > mp(F)—1 for all P € F. Using Bézout’s
theorem for F' and F'x, we have

n(n—1) > degF -degFx = » I(P,FNFx)>» mp(F)mp(Fx)
P P

> mp(F)(mp(F)—=1)> Y 2

P: mp(F)>1
Hence the number of multiple points is bounded above by n(n — 1)/2.

Exercise 2. Let F' be an affine plane curve.

(1) Show that a line L is tangent to F at P if, and only if, I(P, FNL) > mp(F).
This justifies the definition of tangent lines for projective plane curves.

Now, let F' be a projective plane curve and P a simple point on F.
(2) Show that the tangent line to F' at P has equation Fx(P)X + Fy(P)Y +
Fz(P)Z = 0.
Solution 2.
(1) From point 5) of Theorem 4.5, I(P, FNL) > mp(F)mp(L) = mp(F) with
equality if and only if L is not a tangent line of F' at P.
(2) Wlog assume P € {X # 0} and write P = [1 : yp : zp]. In {X # 0}, the
tangent line has the equation

(E)y (P)(Y —yp) + (QF*)z(P)(Z —Zp) =0,



and recall that (F.)e(P) = (Fo)«(P) = F,(P) (where F, is any partial
derivative). Also, by Euler’s homogeneous function theorem, we have

Fx(P) + pry<P) + Zsz<P) = (degF) : F(l,yp72p) =0
and hence we obtain the the equation of the tangent in {X # 0} is
Fx(P)+ Fy(P)Y + Fx(P)Z = 0.

By homogenizing, we obtain, that the equation of the tangent in P? is
Fx(P)X + Fy(P)Y + Fx(P)Z = 0.

Exercise 3. Show that the following projective plane curves are irreducible; find
their multiple points and the tangents at multiple points with their multiplicities:
(1) XY*+vYZzZ++ X27*
(2) X2Y3 + X223 + Y273
B) Y2Z - X(X—-2)(X —-)\2), \ek
4) X"+Y"+2", n>0

Solution 3. To distinguish between indeterminates and coordinates of points, we
will use z,y, z for the coordinates of a point P =[x : y : z].
(1) (Y*4+Z*)X +Y Z* is irreducible by Gauss’ Lemma since it is irreducible in
k(Y, Z)[X] (as it is of degree 1 in X) and primitive in k[Y, Z]|[X] (as YV, Z
don’t divide Y* + Z%).
To determine the multiple points, we compute the partial derivatives:
Fy =Y 4+ 2% [y =4Y3X+2Z*, F,=423Y +423X.

If P=|zx:y:z], then F(P) = Fx(P) = Fy(P) = Fz(P) = 0 implies
yz* = 0 (combining F(P) = 0 and Fx(P)=0), soy = 0 or z = 0. But then
Fx(P)=0givesy =2=0so P =[1:0:0]is the only multiple point.

To determine the tangents at P, we work in {X # 0}, where P is just
the origin. Dehomogenizing, we get

F.=Y*4+72Y+YZ"

If chark = 2, then Y4 + Z* = (Y + Z)%, so F has the quadruple tangent
Y + Z. If not, then there exists a primitive 8th root of unity (, and we
have
Vi 2= (V 4 ()Y = CO)Y +iCZ)Y —iCZ)

So in that case, F' has the 4 distinct tangents Y +(Z, Y — (Z, Y +1(Z,
Y —icZ.

(2) F=X*(Y?+2°)+Y?Z? is irreducible since it is irreducible in k(Z,Y)[X]
(=222 is not a square, and Z3 + Y3, Z3Y? are coprime in k[Y, Z]).

Z34+Y
To determine the multiple points, we compute the partial derivatives:

Fy =2X(Y*+ 7%, Fy =YX +27°%), F,=3Z*X*+Y?).
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From the coefficients, it is clear that we should distinguish cases according
to the characteristic:

chark = 2:

chark = 3:

char k # 2, 3:

From Fy = 0 we obtain zy = 0, and then from F; = 0 we have
z(x +y) = 0. This implies that precisely two of the coordinates are 0,
and thus the multiple points are in {[1:0:0],[0:1:0],[0:0: 1]}. Tt
is starightforward to check that these are indeed multiple points.
From Fy = 0 we obtain yz = 0, and Fx = 0 gives z(y + z) = 0. This
then gives again the the solutions {[1:0:0],[0:1:0],[0:0: 1]}, all
of which are multiple points.

If Z #0, then F; = 0 gives y> = —22, and plugging this into F' = 0
gives xy = 0, Fx gives x = 0, Fy gives y = 0, so in this case we obtain
[0 : 0 : 1] which is indeed a multiple point. If z = 0, then Fy gives
xy = 0 so we obtain [1: 0: 0] and [0 : 1 : 0], which again are indeed
multiple points.

In all three cases, the multiple points are precisely [1:0: 0], [0:1: 0] and
[0:0:1]. Dehomogenizing with X = 1 gives that [1 : 0 : 0] has multiplicity
3. The tangents are Y + (*Z with i € {0,1,2} where ( is a primitive 3rd
root of unity if chark # 3 and ( = 1 if char k = 3. Dehomogenizing with
Y = 1 gives that [0 : 1 : 0] has multiplicity 2 with double tangent X.
Dehomogenizing with Z = 1 gives that [0 : 0 : 1] has multiplicity 2 with
tangents X +4Y, where i is a primitive 4th root of unity if char k # 2 and
is 1 otherwise.

3) F=

Y?Z — X (X — Z)(X — A\Z) irreducible since irreducible in k(X, Z)[Y]

and Z, X(X — Z)(X — \Z) coprime in k[ X, Z].
To obtain the multiple points, we compute the partial derivatives:

Fx=—(X-2)(X -)\2) - X(X - )\2) - X(X - 2),
Fy=2YZ, Fz=Y>+(\+1)X*-2\XZ.

Looking at Fy it is clear that the case char k = 2 needs extra care.

char k # 2:

In this case Fy gives yz = 0. If z = 0, then F gives x = 0 and
then F gives y = 0, so we find no multiple points here. If z # 0,
then we must have y = 0. Combining F' and Fx, we see that x must
be a double root of the polynomial p(T') = T(T — 2)(T — A\z) (as it
annihilates both p and p'). If A ¢ {0, 1}, then p has no double root, so
there are no multiple points. If A € {0, 1}, then p has the double root
Az, so we obtain the candidate [A : 0 : 1] for the multiple point. It is
straightforward to check that this is indeed a multiple point.

Now we determine the tangents: if A = 0, the unique multiple point is
P =[0:0:1]. Dehomogenizing with Z = 1 gives that the multiplicity
is 2 and the tangents are Y + X. If A = 1, the unique multiple point
is [1:0: 1]. Dehomogenizing with Z =1 gives F, = Y? — X (X — 1)
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char k = 2:

and translating to (1,0) gives
FAX+1,Y)=Y%— (X +1)X2

Hence the multiplicity is 2. The tangents here are X £Y, but we have
to translate them back to (1,0) giving X +Y — 1. These are now the
tangents in {Z # 0}, so by homogenizing we obtain the the tangents
are X +Y — Z.

In this case Fy gives y?>+2%(A+1) = 0. If # = 0 then hence have y = 0
and so we obtain the candidate [0 : 0 : 1]. It is straightforward to check
that this is a multiple point if and only if A = 0. If x # 0, then plugging
in 5> = (A + 1)2? in the original equation and using that chark = 2,
we obtain 22 4+ \z2. As every element in an algebraically closed field
of characteristic 2 has a unique square root, we hence obtain that

x = +/Azand y = v Az. This gives the candidate [V : /XA +1) : 1
and one can check that this is indeed a multiple point.
In conclusion, we obtain that for every A\, F' has the unique multi-

ple point | \/_ VAA+1) . Let us compute the tangents: we
dehomogenize with Z =1, glvmg

F, =Y+ X(X +1)(X +\).
Translating to \/X VAA 4 1)) then gives
<X+\/_Y+\/ A+1> + A+ VA DX 4 X3

Hence the multiplicity is two, with double tangent Y 4 (/2 4+ A\V/4 +
1)X. Translating back by replacing Y with ¥ — /A(A+ 1) and X
with X — v\, we obtain that the equation of the double tangent is

Y 4+ (A2 AV L)X 4 A

This is the equation in {Z # 0}, so to obtain the equation in P? we
have to dehomogenize, giving that

Y+ (W2 A DX + 0347
is the equation of the double tangent of F' at its multiple point.

Remark. The curve F' in this point of the exercise is what is called an
elliptic curve, and in characteristic # 2, 3, all elliptic curves are isomorphic
to I above with a specific choice of A ¢ {0,1}.

(4) If p = char k | n, then F' is reducible, because if we write n = mp" then

So let us assume that p t+ n. We want to show that F' is irreducible by
using Eisenstein’s criterion in k[Y, Z]|[X]. For this it is enough to find an
irreducible polynomial in k[Y, Z] which divides Y 4+ Z" but whose square
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doesn’t. Notice that if ( € k is such that (" = —1, then Y — (Z is a
factor of Y™ + Z". Let us write Y" + Z" = (Y — (Z)!G(Y, Z) for some
G € k[Y, Z]. If we assume by contradiction that [ > 1, then taking the
derivative with respect to Y and plugging in Y = (Z gives that n(¢Z)"! =
0, contradiction (here we use n  char k). Hence Y — (Z is a simple factor
of Y™+ Z", so by Eisenstein we obtain that X" + Y™ + Z" is irreducible.
But then there are no multiple points: the partial derivatives of F' are

Fy =nX""', Iy =nY" ! F, =nzZ"!,

and so they vanish simultaneously only for x =y = 2 = 0.

In the case where n = mp” with » > 1 and p t m, then every point of
F' has multiplicity p", and the tangents are just p"-fold multiples of the
tangents of X™ + Y™+ Z™.

Exercise 4. Find the intersection points and the intersection numbers of the
following pairs of projective plane curves:

(1) Y2Z - X(X —2Z)(X + Z) and Y? + X? —2XZ

(2) (X2+Y?)Z+ X3 +Y3and X3 +YV3 -2XYZ

(B) Y = X(Y?—XZ)?and Y*+Y3Z — X227

(4) (X2 +Y?)2+3X?%YZ —-Y3Z and (X2 +Y?)3 —4X?Y?272

Solution 4. We will always denote the first curve by F' and the second curve by
G.

(1) Replacing y* with —z? + 2z2 in the second equation gives z € {0, +2z}. If
x = 0 then also y = 0 and thus we only obtain P, = [0:0: 1]. If x # 0,
then in particular we must have chark # 2 and x = £2z. Plugging this
back into G, we obtain the three intersection points % = [2 : 0 : 1] and
Py, =[-2:4y/-8:1].

For the intersection multiplicity, if chark = 2, then as P, = [0 : 0 : 1]
is the only intersection point, we must have I(P;, F N G) = 6 by Bezouts
theorem. If chark # 2, we have to compute the individual intersection
multiplicities. Notice that all of the intersection points are in {Z # 0}, so
we dehomogenize with Z = 1. By abuse of notation, we will still denote
by P; the corresponding point in the affine chart. We have

I(P,FNG)=1(P,(Y? - X(X —2)(X +1))N(Y*+ X* - 2X))
D[P X(X —2)(X +2)N (Y2 + X2 —2X))
—1( (X = Px)N(Y?+X? - 2X))
2 I(P (X ~ Pix) N (Y2~ PA)),
)

where we write P, = (P, x, P,y) (ie. o= [Pix: Py :1]). Soif P,y =0
then I(P;, FNG) = 2 and if P,y # 0 then I(P,, FNG) = 1. That is,
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at P2, the curves intersect with multiplicity 2, and at P54 they intersect
with multiplicity 1.

(2) Replacing x3 + 3 in F with 2zyz gives z(z + y)? = 0. If z = 0, we obtain
the intersection points [1 : —¢? : 0], where ( is a primitive 3rd root of unity
(if chark = 3 we only have [1 : —1:0]). If 2 # 0, we obtain z = —y and
thus 222 = 0. If chark = 2 then all points of the form [z : —z : 1] are
in the intersection, i.e. F' and G have the common component X + Y. If
char k # 2, then we obtain only [0: 0 : 1].
We divide the computation of the intersection multiplicity according to
the characteristic.
char £ = 2: In this case we have intersection multiplicity co at points on X + Y.
Apart from that, we only have the three intersection points P; = [1 :
—(": 0] for i € {1,2}. We dehomogenize with X = 1, giving

(P FNG) 2 1P, (1 +Y)22)N(1+Y?))

1P, Zzn(1-Y +Y?)
PPz =)
~ 1.

char k = 3: In this case we obtained that the points of intersection are precisley
P =[1:-1:0land P, =1[0:0:1]. For P, we dehomogenize with
X =1 to obtain

I(PLFNG) 2 I(PL(1+Y)2Z2)n (1 +Y) —2Y 2))

VL o I(PL, A+ Y)NYZ) + (P, ZN(1+Y)?)

209 43

=9.
By Bezout, we obtain that (P, F N G) is equal to 9 — 5 = 4.
char k # 2,3: In this case we have the intersection points P; = [1 : —(* : 0] with
i€{0,1,2} and P; =[0:0:1]. Fori € {0,1,2} we dehomogenize
with X =1 and obtain
I(P,FNG) 2 (P (1+Y)2Z)N(1+Y? —2YZ))

VL o[(P,(1+Y)NYZ)+ (P, ZN(1+Y?))

O oI(P, (1 +Y)NZ) + I(P, Z0 (Y + ()

For : = 0 we obtain 3, and for ¢ = 1,2 we obtain 1. By Bezout, this
gives that I(Ps, FNG) = 4.
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(3) Expanding (y? — z2)? in F and replacing 2?22 with y* + y32 we obtain
v (y® — 2(2y° — 222 +y2)) = 0.

If y = 0, then G gives xz = 0 so we obtain candidates P, = [1 : 0 : 0]
and P, = [0 : 0 : 1], and it is straightforward to see that they are indeed
intersection points. If y # 0 we may assume that y = 1, and then from the
above equation we obtain
l—xz(2—22242)=0
= (1 —zz)(1 —2z)=0.
If zz = 1 then G gives z = 0, contradiction. So we obtain 1 — 2z = 0. So if
char k = 2 then there are no further intersection points, and if char k # 2,
then G gives that z is a solution of 1 + z — 22/4. If we denote these
solutions by zj 2, then we obtain candidates P34 = [1/2:1: 215, and it is
straightforward to check that these are indeed intersection points.
To compute the intersection multiplicities, we distinguish cases along the
characteristic.

char £ = 2: In this case we only have P; and P,. Let us compute the intersection
multiplicity for P»: we dehomogenize with Z = 1 to obtain

I(Py, FNG)=I(P, (Y’ = XY?* = X))N (Y +Y3 - X?))

D 1Py, (VP — XY3) N (Y + Y3 — X?))

9 SI(P,YN(Y'+ Y3~ XN+ (P, (Y= X)Nn(Y*+ Y3 - X?))

61 (P (Y2 — X)N (Y4 Y3 — X?))

D64 1(Py (Y2 - X)NY?)

017 g

By Bezout, we then obtain I(P, FNG) = 11.
char k # 2: We start with P,, so we dehomogenize with Z = 1 and obtain
I(P, FNG)=1(P, (Y= X(Y? = X)) N (Y*+ Y3 - X?)

D[Py (Y — X(Y4 = 2XY2 + Y1+ V3) N GY)
o [(P,Y NG +I(P, (VP — X(2Y? — 2X +Y))NG,)
|

=2 —(Y—2X)(Y2—X)
O 4 (P, (Y —2X) NG+ 1(Po, (Y2 — X)NG.)
Do+, 110,

=9.



Similarly, for P; we dehomogenize with X = 1 and have
I(PLEFNG)=I1(P, Y’ = (Y2 =2 )n(Y*+Y?*Z - Z%))

DI(PL (Y — (Y4 = 2YV2Z + Y 4+ YV32) N (Y + Y3Z — 22))

Qo [(PLY N (YA +Y3Z — Z2) +I(P, (VP —2Y? — Y Z +22))N(Y* + Y3Z — 7))

(.

= —(Y—2)(Y2—2)
O 4 I(PL(Y2— 2)N (Y YPZ — 27)
—9.

By Bezout, this then implies also I(Ps4, FNG) = 1.

(4) If chark = 2, then G is (X +Y)% and F is (X +Y)?((X +Y)?+Y Z), so in
this case every point [z : —x : z] on G is also on I and we have intersection
multiplicity co. So let us assume char k # 2 from now on. If zy = 0 then
G gives x = y = 0 so the candidate P, = [0 : 0 : 1] which is indeed in the
intersection. If 2 = 0 then we obtain 22 +y? = 0 which gives the candidates
Py 3 =[1: +i: 0], which are indeed in the intersection. If 22+ y? = 0, then
G gives 42%y?2? = 0 which is already covered by the above. Hence we may
assume x,y, 2z # 0 and 22 + y* # 0 from now on.

From F', we then obtain y(3z* —y?) # 0 and z = y(g;?f;j) Plugging this

into G we obtain
(22 + 123y (32% — y)? — datyP(z® +y2) = 0
and thus, as y?, 22 + y? # 0,
(32% — y*)? — 42 (2 +y*) = 0.
Simplifying, we obtain
52t — 102%y* + y* = 0.

As x # 0 we may assume x = 1. Notice that if chark = 5, then y = 0 but
this was already covered above. If char k # 5, then as the discriminant of
A2 —10A+5 = 0is 80 and as we also suppose char k # 2, we obtain that this
quadratic equation has precisely two roots A; .We then have y = £/ 2,

and all of these values give us solutions to F' = GG = 0. Hence we obtain
the 4 intersection points

(1+ A12)?

V4 >\1,2()\1,2 —3)

Notice that the intersection multiplicity at [0 : 0 : 1] was computed in

Exercise 3 on Sheet 10 (it is the multiplicity of £ N F' at the origin): we
9
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have I(Py, FNG) = 18 if char k = 5 and 14 otherwise. Now let us compute
I(Py3,F N G): we dehomogenize with X = 1, giving
I(Pog, FNG) = 1(Pos, (1 +Y?)?+3YZ - Y?Z) N (1 + Y?)? —4Y*2Z?))

D I(Pos, (L+Y*?+3YZ -Y3Z)N(-YZ(AYZ — (Y?+1)(Y* - 3))))

V0 [(Pos, (L4 Y22 +3YZ —YPZ) N (4Y Z — (Y + 1)(Y? - 3)))

Do [(Poa, (1+ Y21+ Y2 — (Y2 —3)/4))N(AYZ — (Y2 + 1)(Y? — 3)))

6)

2D 9 4 I(Pys, (1+ YY) N (AYZ — (Y2 + 1)(Y2 - 3))

D94 I(Pys, (1+Y?) N4Y Z)

V) 9 4 [(Pys, (1 4+ YY) N 2)

=3.
If char k = 5 then with the multiplicity at P; this adds up to 24, confirm-
ing Bezouts theorem in this instance. If chark # 2,5, then the sum of

multiplicities at P, 53 is 20. By Bezouts theorem, we then obtain that the
intersection multiplicity at Py 567 must be equal to 1.
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