
ALGEBRAIC CURVES
SOLUTIONS SHEET 11

Exercise 1. Let F be a projective plane curve.

(1) Let P ∈ P2
k. Show that P is a multiple point of F if, and only if, F (P ) =

FX(P ) = FY (P ) = FZ(P ) = 0.
(2) Suppose F is irreducible. Show that F has finitely many multiple points.
(3) Suppose F is nonsingular. Show that F is irreducible.

Now assume that F is irreducible of degree n.

(4) Show that F has at most 1
2
n(n − 1) multiple points. (Hint: combine Be-

zout’s theorem with previous questions.)

Solution 1.

(1) Wlog, let P = [1 : 0 : 0]. P is a simple point ⇐⇒ F∗(Y, Z) has a
simple point at (0, 0). Denote F1(Y, Z) its degree 1 part. Then F1(Y, Z) ̸=
0 ⇐⇒ (F∗)Y (0, 0) ̸= 0 or (F∗)Z(0, 0) ̸= 0. Moreover, (F∗)Y = (FY )∗,
(F∗)Z = (FZ)∗. Note that by the formula

dF = XFX + Y FY + ZFZ

F (P ) = 0 and FY (P ) = FZ(P ) = 0 together with P ∈ {X ̸= 0} implies
FX(P ) = 0.

(2) The proof is completely analogous to Exercise 4.4 on Sheet 8 (and you could
deduce the version here from the version there by working in a standard
affine cover). By point (1), the locus of multiple points is given by M =
V (F, FX , FY , FZ). If we assume by contradiction that this is infinite, then
it must have dimension at least 1 by Exercise 2 on Sheet 7. Then, by
Exercise 1.4 on Sheet 7, we obtain M = V (F ), and thus in particular
FX , FY , FZ ∈ Ip(F ). As F is irreducible, we have Ip(F ) = (F ), and as
the degree of FX , FY , FZ is strictly smaller than the degree of F , we hence
obtain that all the partial derivatives are equal to 0. In characteristic 0,
this would imply that F is constant, contradiction. If the characteristic of
k is p > 0, then we obtain that F = G(Xp, Y p, Zp) for some homogeneous

form G ∈ k[X, Y, Z]. But then, if we define G1/p :=
∑

i,j,l G
1/p
i,j,lX

iY jZ l, we

obtain F = (G1/p)p, contradicting the fact that F is irreducible.
(3) Suppose F reducible, F = F1F2. Then by Bezout V (F1) and V (F2) inter-

sects at least in one point P . As we have

FX = F1(F2)X + (F1)XF2,
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and F1(P ) = F2(P ) = 0, it follows that FX(P ) = 0. The same holds also
for the other partial derivatives, and hence we obtain that P is a multiple
point, contradiction. Hence F must be irreducible.

(4) By the proof of point (2), we must have that at least one of the partial
derivatives of F doesn’t vanish; without loss of generality we assume FX ̸=
0. Let P be a multiple point of F . We distinguish two cases:

• P = [1 : 0 : 0]. As P ∈ F , we can write F = Xn−1F1(Y, Z) + · · · +
Fn(Y, Z). Then FX = (n − 1)Xn−2F1(Y, Z) + · · · + Fn−1(Y, Z). In
particular, we have mP (FX) ≥ mP (F ) (with equality if and only if
char k ∤ n− 1).

• P ∈ {Y ̸= 0} ∪ {Z ̸= 0}, wlog P ∈ {Y ̸= 0}. Let F∗ be the deho-
mogenization with respect to Y , and write P = [xP : 1 : zP ]. Then if
m = mP (F ), we have

F∗(xP +X, zP + Z) = Fm(X,Z) + (higher order terms)

for some homogeneous m–form Fm. Then notice that

(FX)∗(xP +X, zP + Z) = (F∗)X(xP +X, zP + Z) = (Fm)X(X,Z) + · · ·

so as (Fm)X is an (m − 1)-form (or 0), we obtain that mP (FX) ≥
m− 1 = mP (F )− 1.

In conclusion, we have mP (FX) ≥ mP (F )−1 for all P ∈ F . Using Bézout’s
theorem for F and FX , we have

n(n− 1) ≥ degF · degFX =
∑
P

I(P, F ∩ FX) ≥
∑
P

mP (F )mP (FX)

≥
∑
P

mP (F )(mP (F )− 1) ≥
∑

P : mP (F )>1

2

Hence the number of multiple points is bounded above by n(n− 1)/2.

Exercise 2. Let F be an affine plane curve.

(1) Show that a line L is tangent to F at P if, and only if, I(P, F∩L) > mP (F ).
This justifies the definition of tangent lines for projective plane curves.

Now, let F be a projective plane curve and P a simple point on F .

(2) Show that the tangent line to F at P has equation FX(P )X + FY (P )Y +
FZ(P )Z = 0.

Solution 2.

(1) From point 5) of Theorem 4.5, I(P, F ∩L) ≥ mP (F )mP (L) = mP (F ) with
equality if and only if L is not a tangent line of F at P .

(2) Wlog assume P ∈ {X ̸= 0} and write P = [1 : yP : zP ]. In {X ̸= 0}, the
tangent line has the equation

(F∗)Y (P )(Y − yP ) + (F∗)Z(P )(Z − ZP ) = 0,
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and recall that (F∗)•(P ) = (F•)∗(P ) = F•(P ) (where F• is any partial
derivative). Also, by Euler’s homogeneous function theorem, we have

FX(P ) + yPFY (P ) + zPFZ(P ) = (degF ) · F (1, yP , zP ) = 0

and hence we obtain the the equation of the tangent in {X ̸= 0} is

FX(P ) + FY (P )Y + FX(P )Z = 0.

By homogenizing, we obtain, that the equation of the tangent in P2 is
FX(P )X + FY (P )Y + FX(P )Z = 0.

Exercise 3. Show that the following projective plane curves are irreducible; find
their multiple points and the tangents at multiple points with their multiplicities:

(1) XY 4 + Y Z4 +XZ4

(2) X2Y 3 +X2Z3 + Y 2Z3

(3) Y 2Z −X(X − Z)(X − λZ), λ ∈ k
(4) Xn + Y n + Zn, n > 0

Solution 3. To distinguish between indeterminates and coordinates of points, we
will use x, y, z for the coordinates of a point P = [x : y : z].

(1) (Y 4+Z4)X+Y Z4 is irreducible by Gauss’ Lemma since it is irreducible in
k(Y, Z)[X] (as it is of degree 1 in X) and primitive in k[Y, Z][X] (as Y, Z
don’t divide Y 4 + Z4).
To determine the multiple points, we compute the partial derivatives:

FX = Y 4 + Z4, FY = 4Y 3X + Z4, FZ = 4Z3Y + 4Z3X.

If P = [x : y : z], then F (P ) = FX(P ) = FY (P ) = FZ(P ) = 0 implies
yz4 = 0 (combining F (P ) = 0 and FX(P )=0), so y = 0 or z = 0. But then
FX(P ) = 0 gives y = z = 0 so P = [1 : 0 : 0] is the only multiple point.

To determine the tangents at P , we work in {X ̸= 0}, where P is just
the origin. Dehomogenizing, we get

F∗ = Y 4 + Z4 + Y Z4.

If char k = 2, then Y 4 + Z4 = (Y + Z)4, so F has the quadruple tangent
Y + Z. If not, then there exists a primitive 8th root of unity ζ, and we
have

Y 4 + Z4 = (Y + ζZ)(Y − ζZ)(Y + iζZ)(Y − iζZ)

So in that case, F has the 4 distinct tangents Y + ζZ, Y − ζZ, Y + iζZ,
Y − iζZ.

(2) F = X2(Y 3+Z3)+Y 2Z3 is irreducible since it is irreducible in k(Z, Y )[X]

(− Z3Y 2

Z3+Y 3 is not a square, and Z3 + Y 3, Z3Y 2 are coprime in k[Y, Z]).
To determine the multiple points, we compute the partial derivatives:

FX = 2X(Y 3 + Z3), FY = Y (3X2Y + 2Z3), FZ = 3Z2(X2 + Y 2).
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From the coefficients, it is clear that we should distinguish cases according
to the characteristic:

char k = 2: From FY = 0 we obtain xy = 0, and then from FZ = 0 we have
z(x+ y) = 0. This implies that precisely two of the coordinates are 0,
and thus the multiple points are in {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. It
is starightforward to check that these are indeed multiple points.

char k = 3: From FY = 0 we obtain yz = 0, and FX = 0 gives x(y + z) = 0. This
then gives again the the solutions {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, all
of which are multiple points.

char k ̸= 2, 3: If Z ̸= 0, then FZ = 0 gives y2 = −x2, and plugging this into F = 0
gives xy = 0, FX gives x = 0, FY gives y = 0, so in this case we obtain
[0 : 0 : 1] which is indeed a multiple point. If z = 0, then FY gives
xy = 0 so we obtain [1 : 0 : 0] and [0 : 1 : 0], which again are indeed
multiple points.

In all three cases, the multiple points are precisely [1 : 0 : 0], [0 : 1 : 0] and
[0 : 0 : 1]. Dehomogenizing with X = 1 gives that [1 : 0 : 0] has multiplicity
3. The tangents are Y + ζ iZ with i ∈ {0, 1, 2} where ζ is a primitive 3rd
root of unity if char k ̸= 3 and ζ = 1 if char k = 3. Dehomogenizing with
Y = 1 gives that [0 : 1 : 0] has multiplicity 2 with double tangent X.
Dehomogenizing with Z = 1 gives that [0 : 0 : 1] has multiplicity 2 with
tangents X ± iY , where i is a primitive 4th root of unity if char k ̸= 2 and
is 1 otherwise.

(3) F = Y 2Z −X(X −Z)(X −λZ) irreducible since irreducible in k(X,Z)[Y ]
and Z, X(X − Z)(X − λZ) coprime in k[X,Z].

To obtain the multiple points, we compute the partial derivatives:

FX = −(X − Z)(X − λZ)−X(X − λZ)−X(X − Z),

FY = 2Y Z, FZ = Y 2 + (λ+ 1)X2 − 2λXZ.

Looking at FY it is clear that the case char k = 2 needs extra care.
char k ̸= 2: In this case FY gives yz = 0. If z = 0, then F gives x = 0 and

then FZ gives y = 0, so we find no multiple points here. If z ̸= 0,
then we must have y = 0. Combining F and FX , we see that x must
be a double root of the polynomial p(T ) = T (T − z)(T − λz) (as it
annihilates both p and p′). If λ /∈ {0, 1}, then p has no double root, so
there are no multiple points. If λ ∈ {0, 1}, then p has the double root
λz, so we obtain the candidate [λ : 0 : 1] for the multiple point. It is
straightforward to check that this is indeed a multiple point.
Now we determine the tangents: if λ = 0, the unique multiple point is
P = [0 : 0 : 1]. Dehomogenizing with Z = 1 gives that the multiplicity
is 2 and the tangents are Y ±X. If λ = 1, the unique multiple point
is [1 : 0 : 1]. Dehomogenizing with Z = 1 gives F∗ = Y 2 −X(X − 1)2,
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and translating to (1, 0) gives

F∗(X + 1, Y ) = Y 2 − (X + 1)X2.

Hence the multiplicity is 2. The tangents here are X±Y , but we have
to translate them back to (1, 0) giving X ± Y − 1. These are now the
tangents in {Z ̸= 0}, so by homogenizing we obtain the the tangents
are X ± Y − Z.

char k = 2: In this case FZ gives y2+x2(λ+1) = 0. If x = 0 then hence have y = 0
and so we obtain the candidate [0 : 0 : 1]. It is straightforward to check
that this is a multiple point if and only if λ = 0. If x ̸= 0, then plugging
in y2 = (λ + 1)x2 in the original equation and using that char k = 2,
we obtain x2 + λz2. As every element in an algebraically closed field
of characteristic 2 has a unique square root, we hence obtain that
x =

√
λz and y =

√
λx. This gives the candidate [

√
λ :

√
λ(λ+ 1) : 1],

and one can check that this is indeed a multiple point.
In conclusion, we obtain that for every λ, F has the unique multi-
ple point [

√
λ :

√
λ(λ+ 1) : 1]. Let us compute the tangents: we

dehomogenize with Z = 1, giving

F∗ = Y 2 +X(X + 1)(X + λ).

Translating to (
√
λ,

√
λ(λ+ 1)) then gives

F∗

(
X +

√
λ, Y +

√
λ(λ+ 1)

)
= Y 2 + (λ+

√
λ+ 1)X2 +X3.

Hence the multiplicity is two, with double tangent Y + (λ1/2 + λ1/4 +

1)X. Translating back by replacing Y with Y −
√
λ(λ+ 1) and X

with X −
√
λ, we obtain that the equation of the double tangent is

Y + (λ1/2 + λ1/4 + 1)X + λ3/4.

This is the equation in {Z ̸= 0}, so to obtain the equation in P2 we
have to dehomogenize, giving that

Y + (λ1/2 + λ1/4 + 1)X + λ3/4Z

is the equation of the double tangent of F at its multiple point.

Remark. The curve F in this point of the exercise is what is called an
elliptic curve, and in characteristic ̸= 2, 3, all elliptic curves are isomorphic
to F above with a specific choice of λ /∈ {0, 1}.

(4) If p = char k | n, then F is reducible, because if we write n = mpr then

Xn + Y n + Zn = (Xm + Y m + Zm)p
r

.

So let us assume that p ∤ n. We want to show that F is irreducible by
using Eisenstein’s criterion in k[Y, Z][X]. For this it is enough to find an
irreducible polynomial in k[Y, Z] which divides Y n + Zn but whose square
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doesn’t. Notice that if ζ ∈ k is such that ζn = −1, then Y − ζZ is a
factor of Y n + Zn. Let us write Y n + Zn = (Y − ζZ)lG(Y, Z) for some
G ∈ k[Y, Z]. If we assume by contradiction that l > 1, then taking the
derivative with respect to Y and plugging in Y = ζZ gives that n(ζZ)n−1 =
0, contradiction (here we use n ∤ char k). Hence Y − ζZ is a simple factor
of Y n + Zn, so by Eisenstein we obtain that Xn + Y n + Zn is irreducible.
But then there are no multiple points: the partial derivatives of F are

FX = nXn−1, FY = nY n−1, FZ = nZn−1,

and so they vanish simultaneously only for x = y = z = 0.
In the case where n = mpr with r > 1 and p ∤ m, then every point of

F has multiplicity pr, and the tangents are just pr-fold multiples of the
tangents of Xm + Y m + Zm.

Exercise 4. Find the intersection points and the intersection numbers of the
following pairs of projective plane curves:

(1) Y 2Z −X(X − 2Z)(X + Z) and Y 2 +X2 − 2XZ
(2) (X2 + Y 2)Z +X3 + Y 3 and X3 + Y 3 − 2XY Z
(3) Y 5 −X(Y 2 −XZ)2 and Y 4 + Y 3Z −X2Z2

(4) (X2 + Y 2)2 + 3X2Y Z − Y 3Z and (X2 + Y 2)3 − 4X2Y 2Z2

Solution 4. We will always denote the first curve by F and the second curve by
G.

(1) Replacing y2 with −x2 +2xz in the second equation gives x ∈ {0,±2z}. If
x = 0 then also y = 0 and thus we only obtain P1 = [0 : 0 : 1]. If x ̸= 0,
then in particular we must have char k ̸= 2 and x = ±2z. Plugging this
back into G, we obtain the three intersection points P2 = [2 : 0 : 1] and
P3,4 = [−2 : ±

√
−8 : 1].

For the intersection multiplicity, if char k = 2, then as P1 = [0 : 0 : 1]
is the only intersection point, we must have I(P1, F ∩ G) = 6 by Bezouts
theorem. If char k ̸= 2, we have to compute the individual intersection
multiplicities. Notice that all of the intersection points are in {Z ̸= 0}, so
we dehomogenize with Z = 1. By abuse of notation, we will still denote
by Pi the corresponding point in the affine chart. We have

I(Pi, F ∩G) = I(Pi, (Y
2 −X(X − 2)(X + 1)) ∩ (Y 2 +X2 − 2X))

7)
= I(Pi, X(X − 2)(X + 2) ∩ (Y 2 +X2 − 2X))

6)
= I(Pi, (X − Pi,X) ∩ (Y 2 +X2 − 2X))

7)
= I(Pi, (X − Pi,X) ∩ (Y 2 − P 2

i,Y )),

where we write Pi = (Pi,X , Pi,Y ) (i.e. Pi = [Pi,X : Pi,Y : 1]). So if Pi,Y = 0
then I(Pi, F ∩ G) = 2 and if Pi,Y ̸= 0 then I(Pi, F ∩ G) = 1. That is,
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at P1,2, the curves intersect with multiplicity 2, and at P3,4 they intersect
with multiplicity 1.

(2) Replacing x3 + y3 in F with 2xyz gives z(x+ y)2 = 0. If z = 0, we obtain
the intersection points [1 : −ζ i : 0], where ζ is a primitive 3rd root of unity
(if char k = 3 we only have [1 : −1 : 0]). If z ̸= 0, we obtain x = −y and
thus 2x2 = 0. If char k = 2 then all points of the form [x : −x : 1] are
in the intersection, i.e. F and G have the common component X + Y . If
char k ̸= 2, then we obtain only [0 : 0 : 1].
We divide the computation of the intersection multiplicity according to

the characteristic.
char k = 2: In this case we have intersection multiplicity ∞ at points on X + Y .

Apart from that, we only have the three intersection points Pi = [1 :
−ζ i : 0] for i ∈ {1, 2}. We dehomogenize with X = 1, giving

I(Pi, F ∩G)
7)
= I(Pi, ((1 + Y )2Z) ∩ (1 + Y 3))

6)+2)
= I(Pi, Z ∩ (1− Y + Y 2))

6)+2)
= I(Pi, Z ∩ (Y − ζ i))

= 1.

char k = 3: In this case we obtained that the points of intersection are precisley
P1 = [1 : −1 : 0] and P2 = [0 : 0 : 1]. For P1 we dehomogenize with
X = 1 to obtain

I(P1, F ∩G)
7)
= I(P1, ((1 + Y )2Z) ∩ ((1 + Y )3 − 2Y Z))

6)+7)
= 2I(P1, (1 + Y ) ∩ Y Z) + I(P1, Z ∩ (1 + Y )3)

6)+7)
= 2 + 3

= 5.

By Bezout, we obtain that I(P2, F ∩G) is equal to 9− 5 = 4.

char k ̸= 2, 3: In this case we have the intersection points Pi = [1 : −ζ i : 0] with
i ∈ {0, 1, 2} and P3 = [0 : 0 : 1]. For i ∈ {0, 1, 2} we dehomogenize
with X = 1 and obtain

I(Pi, F ∩G)
7)
= I(Pi, ((1 + Y )2Z) ∩ (1 + Y 3 − 2Y Z))

6)+7)
= 2I(Pi, (1 + Y ) ∩ Y Z) + I(Pi, Z ∩ (1 + Y 3))

6)+2)
= 2I(Pi, (1 + Y ) ∩ Z) + I(Pi, Z ∩ (Y + ζ i))

For i = 0 we obtain 3, and for i = 1, 2 we obtain 1. By Bezout, this
gives that I(P3, F ∩G) = 4.
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(3) Expanding (y2 − xz)2 in F and replacing x2z2 with y4 + y3z we obtain

y2(y3 − x(2y2 − 2xz + yz)) = 0.

If y = 0, then G gives xz = 0 so we obtain candidates P1 = [1 : 0 : 0]
and P2 = [0 : 0 : 1], and it is straightforward to see that they are indeed
intersection points. If y ̸= 0 we may assume that y = 1, and then from the
above equation we obtain

1− x(2− 2xz + z) = 0

=⇒ (1− xz)(1− 2x) = 0.

If xz = 1 then G gives z = 0, contradiction. So we obtain 1− 2x = 0. So if
char k = 2 then there are no further intersection points, and if char k ̸= 2,
then G gives that z is a solution of 1 + z − z2/4. If we denote these
solutions by z1,2, then we obtain candidates P3,4 = [1/2 : 1 : z1,2], and it is
straightforward to check that these are indeed intersection points.

To compute the intersection multiplicities, we distinguish cases along the
characteristic.

char k = 2: In this case we only have P1 and P2. Let us compute the intersection
multiplicity for P2: we dehomogenize with Z = 1 to obtain

I(P2, F ∩G) = I(P2, (Y
5 −X(Y 2 −X)2) ∩ (Y 4 + Y 3 −X2))

7)
= I(P2, (Y

5 −XY 3) ∩ (Y 4 + Y 3 −X2))

6)
= 3I(P2, Y ∩ (Y 4 + Y 3 −X2)) + I(P2, (Y

2 −X) ∩ (Y 4 + Y 3 −X2))

6)
= 6 + I(P2, (Y

2 −X) ∩ (Y 4 + Y 3 −X2))

7)
= 6 + I(P2, (Y

2 −X) ∩ Y 3)

6)+7)
= 9.

By Bezout, we then obtain I(P1, F ∩G) = 11.

char k ̸= 2: We start with P2, so we dehomogenize with Z = 1 and obtain

I(P2, F ∩G) = I(P2, (Y
5 −X(Y 2 −X)2) ∩ (Y 4 + Y 3 −X2))

7)
= I(P2, (Y

5 −X(Y 4 − 2XY 2 + Y 4 + Y 3)) ∩G∗)

6)
= 2 I(P2, Y ∩G∗)︸ ︷︷ ︸

=2

+I(P2, (Y
3 −X(2Y 2 − 2X + Y ))︸ ︷︷ ︸

=(Y−2X)(Y 2−X)

∩G∗)

6)
= 4 + I(P2, (Y − 2X) ∩G∗)︸ ︷︷ ︸

7)+6)+2)
= 2

+ I(P2, (Y
2 −X) ∩G∗)︸ ︷︷ ︸
7)+6)
= 3

= 9.
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Similarly, for P1 we dehomogenize with X = 1 and have

I(P1, F ∩G) = I(P1, (Y
5 − (Y 2 − Z)2) ∩ (Y 4 + Y 3Z − Z2))

7)
= I(P1, (Y

5 − (Y 4 − 2Y 2Z + Y 4 + Y 3Z)) ∩ (Y 4 + Y 3Z − Z2))

6)
= 2 I(P1, Y ∩ (Y 4 + Y 3Z − Z2))︸ ︷︷ ︸

=2

+I(P1, (Y
3 − 2Y 2 − Y Z + 2Z))︸ ︷︷ ︸

=(Y−2)(Y 2−Z)

∩(Y 4 + Y 3Z − Z2))

6)+2)
= 4 + I(P1, (Y

2 − Z) ∩ (Y 4 + Y 3Z − Z2))︸ ︷︷ ︸
7)+6)
= 5

= 9.

By Bezout, this then implies also I(P3,4, F ∩G) = 1.

(4) If char k = 2, then G is (X+Y )6 and F is (X+Y )2((X+Y )2+Y Z), so in
this case every point [x : −x : z] on G is also on F and we have intersection
multiplicity ∞. So let us assume char k ̸= 2 from now on. If xy = 0 then
G gives x = y = 0 so the candidate P1 = [0 : 0 : 1] which is indeed in the
intersection. If z = 0 then we obtain x2+y2 = 0 which gives the candidates
P2,3 = [1 : ±i : 0], which are indeed in the intersection. If x2+ y2 = 0, then
G gives 4x2y2z2 = 0 which is already covered by the above. Hence we may
assume x, y, z ̸= 0 and x2 + y2 ̸= 0 from now on.

From F , we then obtain y(3x2−y2) ̸= 0 and z = (x2+y2)2

y(3x2−y2)
. Plugging this

into G we obtain

(x2 + y2)3y2(3x2 − y2)2 − 4x2y2(x2 + y2)4 = 0

and thus, as y2, x2 + y2 ̸= 0,

(3x2 − y2)2 − 4x2(x2 + y2) = 0.

Simplifying, we obtain

5x4 − 10x2y2 + y4 = 0.

As x ̸= 0 we may assume x = 1. Notice that if char k = 5, then y = 0 but
this was already covered above. If char k ̸= 5, then as the discriminant of
λ2−10λ+5 = 0 is 80 and as we also suppose char k ̸= 2, we obtain that this
quadratic equation has precisely two roots λ1,2.We then have y = ±

√
λ1,2,

and all of these values give us solutions to F = G = 0. Hence we obtain
the 4 intersection points

P4,5,6,7 =

[
1 : ±

√
λ1,2 : ±

(1 + λ1,2)
2√

λ1,2(λ1,2 − 3)

]
Notice that the intersection multiplicity at [0 : 0 : 1] was computed in

Exercise 3 on Sheet 10 (it is the multiplicity of E ∩ F at the origin): we
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have I(P1, F ∩G) = 18 if char k = 5 and 14 otherwise. Now let us compute
I(P2,3, F ∩G): we dehomogenize with X = 1, giving

I(P2,3, F ∩G) = I(P2,3, ((1 + Y 2)2 + 3Y Z − Y 3Z) ∩ ((1 + Y 2)3 − 4Y 2Z2))

7)
= I(P2,3, ((1 + Y 2)2 + 3Y Z − Y 3Z) ∩ (−Y Z(4Y Z − (Y 2 + 1)(Y 2 − 3))))

6)+2)
= 2 + I(P2,3, ((1 + Y 2)2 + 3Y Z − Y 3Z) ∩ (4Y Z − (Y 2 + 1)(Y 2 − 3)))

7)
= 2 + I(P2,3, ((1 + Y 2)(1 + Y 2 − (Y 2 − 3)/4)) ∩ (4Y Z − (Y 2 + 1)(Y 2 − 3)))

6)+2)
= 2 + I(P2,3, (1 + Y 2) ∩ (4Y Z − (Y 2 + 1)(Y 2 − 3))

7)
= 2 + I(P2,3, (1 + Y 2) ∩ 4Y Z)

6)+2)
= 2 + I(P2,3, (1 + Y 2) ∩ Z)

= 3.

If char k = 5 then with the multiplicity at P1 this adds up to 24, confirm-
ing Bezouts theorem in this instance. If char k ̸= 2, 5, then the sum of
multiplicities at P1,2,3 is 20. By Bezouts theorem, we then obtain that the
intersection multiplicity at P4,5,6,7 must be equal to 1.
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